If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-100x-140000=0
a = 1; b = -100; c = -140000;
Δ = b2-4ac
Δ = -1002-4·1·(-140000)
Δ = 570000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{570000}=\sqrt{10000*57}=\sqrt{10000}*\sqrt{57}=100\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-100\sqrt{57}}{2*1}=\frac{100-100\sqrt{57}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+100\sqrt{57}}{2*1}=\frac{100+100\sqrt{57}}{2} $
| 48-8x-8x=100 | | 4x-10=4x+50 | | 5x-9x+150=9x+90 | | 7x+5(2x-1)=7x+4 | | 3(3-y)+1=21 | | 2x-3х-6х=-10 | | 5x−26=9. | | 2x+7=3x-19 | | 5+8x-6x=3x+9-3x | | 2u+48=-9(u-9) | | 5x+15x+13=3x-11 | | (k-8)/4=11 | | 3.2g+2=1.2g+8 | | 4x-4(x+2)=4x-12 | | 3(x-3)=4(x+5) | | 5b-5b+b+3=7 | | 7x-(3x12)=18 | | 26-f=26 | | 5b−5b+b+3=7 | | S/e-4=2 | | 20c-19c=8 | | 45-9x+9=56 | | -3/x+3=6/3x-2 | | 4x+1=-3+2x | | 9(5x/9+x/3-13/9)=1/3 | | 6x+16=6x+15 | | 7(2+3x)=8 | | -y-(-6y)-14y-(-7)=-20 | | -12=4x=40 | | 2x-0.5=-1.7 | | 3q-q-2q+q-1=14 | | 5y+4-2y=2y-9 |